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Abstract—Flow-based switching is increasingly important in 
accordance with the growing demand for in-network processing 
for cloud applications. Flow switching performance tends to be 
degraded in proportion to the number of flow entries. To reduce 
the number of flow entries, they can be aggregated by applying 
wildcard fields. Meanwhile, the existence of the wildcard entry 
adversely affects the use of a hash-based lookup on a flow table, 
and thus a linear search is inherent in flow switching. However, 
the linear search is currently the primary cause of performance 
limitation. To date, two flow tables, one for hash-based lookup 
and the other for a wildcard-enabled linear search, have been 
used for flow switching. While hash-based table lookup is much 
faster than linear search, it needs to be manually updated for 
every exact match entry. Maintaining a hash-based table of all 
the flow switches is not feasible from a network operator 
viewpoint. In this paper, LightFlow, a mechanism to accelerate 
software flow switching processing and relieve the burden of 
maintaining the flow table is proposed. In LightFlow, two-
dimensional parallelization of a linear search is introduced to 
accelerate lookup of the wildcard-enabled flow entries. It also 
introduces a mechanism that allows updating of the hash table to 
be performed automatically based on the result of wildcard-
aware table lookup. LightFlow satisfies both the need for fast 
table lookup and feasibility of flow table management which 
needs to allow a large number of wildcard entries. Experimental 
results show that LightFlow can increase the speed of lookup of a 
wildcard-aware flow table three-fold or more compared to the 
current GPU-based wildcard search mechanisms. 

Keywords-wildcard; table lookup; flow switch; GPU; flow-
based networking 

I.  INTRODUCTION 
Recently, rapid growth of cloud-based services has led to 

the need for fine-grained traffic management in transport 
networks. Consequently, one objective is to carefully control 
the quality required for each application. The other objective is 
to change the functional behavior (e.g., address translation, 
cache, tunneling, etc.) of the network. To achieve such fine-
grained manageability, flow-based networking is expected to 
play a key role in transport networks. OpenFlow [1] is a typical 
technology to support flexible flow switching in the network. 

From the viewpoint of creating a switching substrate, recent 
progress in software-based nodes is significant [2][3][4][5][6]. 
The software-based nodes originally have the high flexibility 
that allows their functionalities to be modified. To improve 

packet processing performance, graphic processing unit 
(GPU)-based flow switching has been proposed [7]. However, 
even in GPU-based flow switching, forwarding performance is 
highly dependent on the size of the flow table, which is 
continuously increased as the number of accommodated users 
increases. This remaining issue is certainly blocking flow 
switches from being rolled out to large-scale networks. 

The remaining issue is derived from the table lookup 
operation of the packet forwarding process. For flow switches, 
two kinds of lookup mechanisms have been introduced so far. 
One is the exact match table and the other is the wildcard-
aware table [8]. In the exact match table, any flow entry can be 
deterministically identified by using a hash function, while the 
hash calculation requires all the flow-identifying fields (e.g., 
MAC addresses, VLAN, MPLS label, IP addresses, TCP/UDP 
port, etc.) to be explicitly determined for all the flow entries. In 
the wildcard-aware table, the flow entry needs to be searched 
linearly from the top of the table, while the wildcard aggregates 
the entries. Thus, the wildcard-aware table has a longer lookup 
time compared to the hash-based exact match table. In 
conventional implementations, flow tables including the 
aforementioned two kinds require manual or semi-automatic 
update. From the viewpoint of the flow table maintenance, 
wildcard-aware table is desirable, but the performance is too 
low. While exact match table provides better performance, 
manual update of its huge entries are not feasible for operators. 
In addition, solutions for coordinating them to automatically 
update the exact match table have not been provided to date. 

In this paper, LightFlow, a mechanism to accelerate 
software flow switching processing and relieve the burden of 
maintaining the flow table is proposed. LightFlow introduces 
two techniques: an acceleration mechanism for looking up the 
wildcard-aware table and automatic updating of the hash-based 
exact match table. The wildcard-aware flow table lookup is 
designed on a GPU-accelerated platform incorporating two-
dimensional parallelized lookup of the entries. Automatic 
update of the hash-based exact match table is carried out in 
coordination with the result of the wildcard-aware flow table 
lookup. The proposed mechanism addresses the 
aforementioned requirements (i.e., lookup time on wildcard-
aware table and maintenance feasibility of hash-based exact 
match table) by advancing the parallelism of linear search for 
wildcard-aware flow table lookup and relieving operators of 
the need to manually maintain all the exact match entries. 
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The rest of this paper is organized as follows: Section II 
describes the existing issues affecting flow table handling in 
flow-based networking. Section III provides the architecture 
and mechanisms of LightFlow. Section IV presents a 
demonstration of the prototype flow switching node and 
analyses the results of performance measurement. Section V 
discusses the feasibility of the proposed mechanism and 
compares it with other mechanisms. Section VI describes 
related work. Section VII concludes this paper. 

II. THE EXISTING ISSUES IN HANDLING FLOW TABLES 
In flow-based networking, each node recognizes “flow” by 

matching multi-layer information such as physical port, MAC 
address, VLAN ID, IP address, QoS values and port numbers. 
According to the policy rules, each node controls the 
forwarding destination, queue assignment, and updating of the 
packets. To make the flow-based networking practical, there 
are two existing issues that need to be resolved. 

A. Lookup Time of Flow Entry 
Fig. 1 (a) and (b) shows the conventional flow table lookup 

mechanisms: hash-based exact match table and wildcard-aware 
linear search table, respectively. The hash-based exact match 
table has columns for hash value, flow identifying fields, and 
destination. The hash value is calculated from the values of 
flow identifying fields. Searching an entry in the table is 
carried out by calculating the hash value for a received packet, 
and directly jumping to the corresponding entry. Since both the 
hash calculation and accessing the entry are a fixed-time simple 
process and independent of the number of the entries, this 
mechanism enables fast table lookup regardless of the table 
size. However, all the flow identifying fields are required to be 
explicitly determined. Since hash functions basically output 
different hash values from different arguments, for the entry to 
be matched to the hash value calculated from packets, all the 
flow identifying fields of the entry need to be identical to those 
of the corresponding packet. This limitation results in the 
growth of the table size. 

Figure 1.  Conventional flow table lookup mechanisms.  

The wildcard-aware linear search table has columns for the 
priority field, flow identifying fields, and destination. The flow 
identifying fields can include wildcard, which enables the 
aggregation of flow entries. Since each entry can include 
wildcard, a packet can be matched to multiple entries in this 
table. To distinguish which entry has priority over another, the 
priority field is added to each entry. Searching an entry in the 
table is carried out sequentially in the order of priority value. 
Thus, if the targeted entry fortunately exists in a highly 
prioritized entry, the lookup process can be completed at an 
early stage. However, the lookup performance of the wildcard-
aware table tends to slow down in accordance with table size. 

B. Maintenance of Flow Table 
In conventional flow switches, flow tables require manual 

or semi-automatic update to reflect operators’ control policy. 
Although there are signaling protocols [9][10][11] which can 
automatically specify end-to-end routes for flows in 
combination with underlying routing mechanisms (e.g., source 
routing [12] and other explicit routing mechanisms), they are 
unlikely to be used for carrier services since they affect the 
development of applications to implement such the signaling 
protocols. Therefore, reducing the number of the flow entries to 
be maintained is important from an operator viewpoint. While 
some flow switches have both the exact match table and 
wildcard-aware table, solutions for coordinating them to 
automatically update the exact match table have not been 
provided to date. Therefore, the huge entries in exact match 
table still require manual update. 

III. PROPOSED ARCHITECTURE AND MECHANISM OF 
LIGHTFLOW 

A. Basic Idea of LightFlow 
There are two requirements for the functionality of the flow 

table: 

• From the viewpoint of operation, aggregation of flow 
information with wildcard is required to avoid 
configuring flow table entries for all flows manually. 

• From the viewpoint of packet forwarding processing, 
high-speed matching is required to maintain 
performance. 

For fast table lookup, hash or other deterministic algorithms 
are suitable, however, such algorithms have difficulty handling 
wildcard, longest prefix matching, and range matching. On the 
other hand, once you have obtained the exact header 
information of the flow, it is better to use deterministic 
algorithms. Considering that wildcard-based matching is 
required only for the first packet of the flow, the rest of the 
packets do not require such a linear search, due to the fact that 
the full set of flow matching information has already been 
obtained while the first packet was being processed. 

The basic idea of LightFlow is as follows: 

• To avoid manual configuration for all the exact entries, 
automatic update of the hash-based exact match table 
is introduced. The addition of entries is based on the 
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matching result of the wildcard-aware table, and the 
deletion of entries is based on periodic monitoring. 

• To accelerate lookup on the wildcard-aware flow table, 
a GPU-accelerated two-dimensional lookup 
mechanism for linear search is introduced. 

Although utilizing both the tables has been considered to 
date, the effect of coordinating the two tables has not been 
investigated. LightFlow tries to relieve operators of the burden 
of managing flow entry directly for each exact flow by 
coordinating the two tables. 

B. Functional Architecture 
Fig. 2 shows the LightFlow architecture. The node has both 

a wildcard-aware flow table and a hash-based exact match 
table. The wildcard-aware flow table manager and the hash-
based exact match table manager update entries on each 
corresponding table. The wildcard-aware flow table manager 
updates the entries of the table according to requests from the 
operator (including manual operation, network management 
systems, routing daemons). The hash-based exact match table 
manager monitors and deletes unused entries from the table. 
The forwarding controller drives the table lookup process for 
both tables in the appropriate sequence. The forwarding engine 
performs packet reception, forwarding, and provides packet 
information to the forwarding controller. 

Figure 2.  The LightFlow architecture.  

The lookup of the destination of a packet occurs in five 
steps. In step 1, the forwarding engine passes the information 
of the received packet (e.g., incoming physical interface, MAC 
addresses, VLAN ID, IP addresses, port numbers) on to the 
forwarding controller. In step 2, the forwarding controller 
searches the hash-based exact match table to check whether a 
matched entry exists or not. If a matched entry is not found, 
then the forwarding controller searches the wildcard-aware 
flow table to find the entry that has the highest priority among 
all the entries that match the packet in step 3. This step is 
skipped in the case where matched entry is found in step 2. In 
step 4, the forwarding controller requests the forwarding engine 
to forward the packet. In the case where the destination is 
resolved in step 3, the forwarding controller adds the new entry 
for the flow to the hash-based exact match table in step 5. 

To update the control policy for flows, the operator requests 
the wildcard-aware flow table manager to update the flow 

information. Then the manager updates the related flow 
information on the table. 

C. Two-Dimensional Parallelization Method for 
Acceleration of Wildcard-Aware Flow Table Lookup 
Fig. 3 shows the proposed lookup mechanism for the 

wildcard-aware flow table. The entry of the wildcard-aware 
flow table is composed of columns for the priority field, flow 
identifying fields, wildcard flags, destination, and option. The 
priority field value is unique for determining which entry 
should be matched. The flow identifying fields include 
multiple columns which are for layer 1 to layer 4 information, 
and wildcard can be used for the arbitral column. Each of the 
columns has its matching criteria such as exact matching, 
longest prefix matching and range matching. The wildcard 
flags field is for fast recognition of columns with wildcard. The 
destination field is the forwarding correspondent and is the 
same as that in conventional IP routing. The option field may 
be included to provide the additional control information (e.g., 
QoS control, packet rewrite). 

Figure 3.  Table lookup on the wildcard-aware flow table. 

The difference in the matching criteria for each column 
made it difficult to carry out parallelization of matching for 
multiple columns by GPU using conventional mechanisms. 
The proposed mechanism applies parallelization to the same 
column for multiple entries which use the same matching 
criteria. This “two-dimensional” parallelization enables a 
higher degree of parallelism on GPU processing to be attained. 

When the forwarding controller recognizes that the 
incoming packet is not matched to any of the hash-based exact 
matching table entries, table lookup on the wildcard-aware 
flow table is invoked. Lookup on the table is carried out from 
the entries with the highest priority and multiple entries are 
checked simultaneously. The lookup procedure consists of the 
following three steps. First, wildcard flags for the selected 
entries are copied to a matching result matrix. Each of the 
elements of the matching result matrix indicates whether the 
corresponding column matches the packet information or not. 
The element with “1” indicates that it matches the packet 
information while the element with “0” indicates otherwise. 
Second, fields whose corresponding elements are “0” are 
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grouped by the same column and checked in parallel by the 
GPU since the check for the same column uses the same 
instruction. And the elements for matched fields are marked as 
“1” in the matching result matrix. Third, the match of each 
entry is judged by calculating the conjunction of all the 
elements in the entry. This process is also accelerated by the 
GPU. If there are entries whose result is “1”, the entry with the 
highest priority is the matched entry. If there are no entries that 
match, the same operation will be carried out for the next 
selected group of entries. 

D. Automatic Update of Hash-based Exact Match Table 
Fig. 4 shows the management process of the hash-based 

exact match table. The entry of the table is composed of 
columns for the hash value, flow identifying fields, destination, 
discard flag and option. The hash value is calculated using all 
the values in the flow identifying fields. The flow identifying 
fields are used to check whether the entry corresponds correctly 
to the searched packet, since conflicting hash values can 
occasionally occur. The discard flag is used to recognize 
whether the entry is outdated and needs to be deleted or not. 
Destination and option are exactly the same as those in the 
wildcard-aware flow table. All the entries are searched using 
hash in this table and the hash value calculation can be 
accelerated by the GPU. 

Figure 4.  Table lookup and update of the hash-based exact match table. 

Addition of entries to the hash-based exact match table is 
triggered by the lookup of the wildcard-aware flow table. 
When a packet matches an entry in the wildcard-aware flow 
table, the hash value for the packet is calculated from the 
header information, and the entry for the packet is newly added 
to the hash-based exact match table. 

Since the addition of entries occurs for every new flow, it is 
necessary to have a deletion mechanism for outdated-entries to 
avoid the situation where the number of entries reaches the 
upper limit of the table size and any new addition of entries is 
rejected. Deletion of entries is carried out independently to 
table lookup for the wildcard-aware flow table and the hash-
based exact match table. The entries are checked periodically, 
and the entries whose discard flag is set to “1” are deleted from 
the hash-based exact match table. The discard flag is set to “1” 
after the entry is checked, while it is set to “0” when the entry 
is newly added or the entry is matched for a forwarded packet. 

IV. PROOF OF CONCEPT DEMONSTRATION 
To prove the feasibility of LightFlow, a prototype node was 

implemented. With the manual flow entry configuration, the 
basic node operation was demonstrated. The table lookup 
performance was measured and compared to that of the 
conventional wildcard-based table lookup. 

A. Environmental Setup 
Fig. 5 shows the configuration of the demonstration. The 

LightFlow prototype is implemented on Linux PC. The 
specifications of the hardware consisting of commodity 
products are shown in TABLE I. The flow switch software is 
implemented on CentOS 6.2 (Linux kernel 2.6.32) and the 
CUDA driver version used was 270.41.19. In this prototype 
implementation, the forwarding controller, wildcard-aware 
flow table manager and hash-based exact matching table 
manager were implemented on the user space of the OS, while 
the wildcard-aware flow table and hash-based exact match 
table were implemented on the GPU global memory. The 
forwarding controller dispatches the lookup process and the 
other tasks such as hash calculation to the GPU through the 
CUDA driver. The forwarding controller also contacts the 
kernel TCP/IP stack to utilize some basic networking tasks (e.g. 
ARP resolution). The forwarding engine is implemented within 
the kernel and it forwards received packets to the forwarding 
controller bypassing the kernel. For the management of 
wildcard-aware flow table entries, a simple command line 
interface (CLI) was implemented. The traffic sender and 
receiver were connected to the node via a 10 gigabit Ethernet 
link. 

Figure 5.  Setup for the demonstration. 

TABLE I.  SPECIFICATIONS OF THE LIGHTFLOW PROTOTYPE 

Device Hardware Quantity

Processor Intel Xeon 5650 2.16GHz 2 

Memory DDR3 8GB ECC-Registered 6 

GPU GeForce GTX580 (3GB VRAM) 2 

Network Intel X520-DA2 Dual port 10GbE 4 

Motherboard SuperMicro X8DAH+F 1 
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B. Table Lookup Performance 
Using the configuration above, the lookup time was 

measured for both the tables by changing the number of entries. 

For the hash-based exact match table, the elapsed time 
required for completing hash calculation and table lookup was 
measured. The average time ranges from 51 microseconds to 
71 microseconds, independent of both the number of the entries 
and the values of the flow identifying fields. 

For the wildcard-based flow table, the lookup time of the 
entry which has the lowest priority was measured for three 
fields with different criteria: exact match field (source MAC 
address), prefix match field (destination IP address), and range 
match field (destination port number). Fig. 6 shows the factor 
of speedup compared to the simulated value of conventional 
linear search-based mechanism [7][13]. LightFlow completed 
wildcard-aware flow table lookup from three- to six-fold 
compared to the conventional mechanism. 

Figure 6.  Speedup of wildcard-aware flow table. 

Regarding the speedup effect obtained through the 
coordination of the wildcard-aware flow table and hash-based 
exact match table, the relationship between average lookup 
time and the number of packets per flow is shown in Fig. 7. 
The number of the entries is 10,000 for both tables. For each 
matching criteria, a highly significant speedup is observed for 
the proposed mechanisms especially when the number of 
packets per flow becomes large, since the proportion of packets 
which require lookup of the wildcard-aware table is decreased. 
The reduction in the time for looking up on the wildcard-aware 
flow table is most effective for prefix matching, since it 
requires more steps to check matching than for the other field 
in lookup of the wildcard-aware flow table. 

Figure 7.  Speedup effect of wildcard-aware flow table coordinating with 
hash-based exact match table. 

V. DISCUSSION 
Since the proposed mechanism uses two tables (wildcard-

aware table and hash-based table), it consumes a lot of memory 
compared to a single wildcard-based table. Although there is a 
trade-off between performance and cost, the feasibility of 
memory usage should be considered. In the case of our 
prototype implementation, 128 bytes and 136 bytes are 
required for a wildcard-aware flow table entry and a hash-
based exact matching table entry, respectively. Fig. 8 shows the 
relationship between the number of entries and memory usage. 
Both tables can hold about ten million entries within 1.4 
gigabytes of memory. Considering that the current number of 
IPv4 routes is about 400,000 [14] and the number of flows 
supported by a commercial flow router is 3,000,000 [15], the 
memory usage of the proposed flow table is feasible. Since 
recent GPUs have a global memory of more than 1.5 gigabytes, 
it is possible for both tables to be extracted using GPU memory 
to hasten memory access. 

Figure 8.  Relationship between the number of entries and memory usage. 

There is another potential issue regarding processing jitter. 
For parallel processing on GPU, some packets may be subject 
to a waiting period until synchronization with other packets 
occurs. In the prototype implementation, the maximum 
variance for the processing time was about 600 microseconds 
in the case of 10,000 flow entries. Note that this value is the 
worst case (i.e., all packets are matched at the lowest priority in 
the wildcard-aware table). Compared to the telecommunication 
carriers’ service level agreement for enterprise networks, 
whose typical value for jitter ranges from sub-milliseconds to 
tens of milliseconds, the measured jitter of the flow table 
lookup seems to be feasible. However, we need to conduct 
further investigations since other causes of jitter (e.g., 
communication between GPU and motherboard) should also be 
taken into account. In addition, there is a possibility of great 
throughput instability when commodity servers are used due to 
interruption processes and so on, compared to the router and 
switch appliances. Therefore, careful tuning of the OS-level 
configuration is also desired for practical use. 

VI. RELATED WORK 
Owing to progress in software router technologies, the 

flexibility of packet processing and its performance have been 
improved. Click modular router [2] is a software router with 
high packet processing flexibility. Due to the enhanced 
performance of PCs, 20 Gbps throughput (per two ports) using 
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10 Gbps network interface cards has already been achieved 
using a commercial software router, Vyatta [3][16]. 
RouteBricks [5] takes a cluster-based approach to achieve 35 
Gbps throughput (per four ports) and its capacity can linearly 
scales to the number of servers. Some recent studies have 
attempted to accelerate packet processing by utilizing a GPU. 
Since a GPU has an advantage regarding parallel processing 
for simple arithmetical instructions, it is suitable for application 
to packet pattern matching and cryptographic processing 
[17][18]. GPU-acceleration is also considered to be promising 
for IP table lookup. [19][20][21] proposed GPU acceleration 
for IP routing table lookup algorithms such as radix-tree [22], 
DIR-24-8-BASIC [23], trie on hash tables [24]. PacketShader 
[7] also uses a GPU for accelerating packet processing. 
PacketShader supports IPv4/v6 routing and flow switching 
based on OpenFlow reference implementation [13]. The flow 
table consists of hash-based exact match entries and wildcard-
aware linear search entries. In PacketShader, hash value 
calculation and wildcard matching are offloaded to the GPU. 
The method proposed in [25] is another approach to accelerate 
flow table lookup using GPU. In the method, hash-based 
lookup tables are generated for each combination of wildcard 
fields, and lookup operation is carried out for all the tables in 
parallel. The method assumes that each field can be matched 
exactly unless the value is not wildcard. Hence, the method 
does not support longest prefix matching and range matching. 

VII. CONCLUSIONS 
This paper proposed LightFlow, a mechanism to speed up 

software flow switching processing and relieve the burden of 
maintaining the flow table. As the key technologies of 
LightFlow, a two-dimensional parallelization of the linear 
search on the wildcard-aware table and an automatic updating 
mechanism for the hash-based exact match table were 
presented. The demonstration showed that the two-dimensional 
parallelization increased the speed of the lookup of the 
wildcard-aware flow table about three- to six-fold compared to 
the conventional mechanism. The demonstration also showed 
that fast lookup of the hash-based exact match table can be 
utilized while operators only have to manage the wildcard-
aware flow table. For future work, the detailed implementation 
of GPU resource allocation and utilization for each 
computation task should be investigated for improving the 
performance of this mechanism. 
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