
LightFlow: Speeding Up GPU-based Flow Switching
and Facilitating Maintenance of Flow Table

Nobutaka Matsumoto and Michiaki Hayashi
Integrated Core Network Control and Management Laboratory

KDDI R&D Laboratories
Fujimino, Saitama, Japan

Abstract—Flow-based switching is increasingly important in
accordance with the growing demand for in-network processing
for cloud applications. Flow switching performance tends to be
degraded in proportion to the number of flow entries. To reduce
the number of flow entries, they can be aggregated by applying
wildcard fields. Meanwhile, the existence of the wildcard entry
adversely affects the use of a hash-based lookup on a flow table,
and thus a linear search is inherent in flow switching. However,
the linear search is currently the primary cause of performance
limitation. To date, two flow tables, one for hash-based lookup
and the other for a wildcard-enabled linear search, have been
used for flow switching. While hash-based table lookup is much
faster than linear search, it needs to be manually updated for
every exact match entry. Maintaining a hash-based table of all
the flow switches is not feasible from a network operator
viewpoint. In this paper, LightFlow, a mechanism to accelerate
software flow switching processing and relieve the burden of
maintaining the flow table is proposed. In LightFlow, two-
dimensional parallelization of a linear search is introduced to
accelerate lookup of the wildcard-enabled flow entries. It also
introduces a mechanism that allows updating of the hash table to
be performed automatically based on the result of wildcard-
aware table lookup. LightFlow satisfies both the need for fast
table lookup and feasibility of flow table management which
needs to allow a large number of wildcard entries. Experimental
results show that LightFlow can increase the speed of lookup of a
wildcard-aware flow table three-fold or more compared to the
current GPU-based wildcard search mechanisms.

Keywords-wildcard; table lookup; flow switch; GPU; flow-
based networking

I. INTRODUCTION
Recently, rapid growth of cloud-based services has led to

the need for fine-grained traffic management in transport
networks. Consequently, one objective is to carefully control
the quality required for each application. The other objective is
to change the functional behavior (e.g., address translation,
cache, tunneling, etc.) of the network. To achieve such fine-
grained manageability, flow-based networking is expected to
play a key role in transport networks. OpenFlow [1] is a typical
technology to support flexible flow switching in the network.

From the viewpoint of creating a switching substrate, recent
progress in software-based nodes is significant [2][3][4][5][6].
The software-based nodes originally have the high flexibility
that allows their functionalities to be modified. To improve

packet processing performance, graphic processing unit
(GPU)-based flow switching has been proposed [7]. However,
even in GPU-based flow switching, forwarding performance is
highly dependent on the size of the flow table, which is
continuously increased as the number of accommodated users
increases. This remaining issue is certainly blocking flow
switches from being rolled out to large-scale networks.

The remaining issue is derived from the table lookup
operation of the packet forwarding process. For flow switches,
two kinds of lookup mechanisms have been introduced so far.
One is the exact match table and the other is the wildcard-
aware table [8]. In the exact match table, any flow entry can be
deterministically identified by using a hash function, while the
hash calculation requires all the flow-identifying fields (e.g.,
MAC addresses, VLAN, MPLS label, IP addresses, TCP/UDP
port, etc.) to be explicitly determined for all the flow entries. In
the wildcard-aware table, the flow entry needs to be searched
linearly from the top of the table, while the wildcard aggregates
the entries. Thus, the wildcard-aware table has a longer lookup
time compared to the hash-based exact match table. In
conventional implementations, flow tables including the
aforementioned two kinds require manual or semi-automatic
update. From the viewpoint of the flow table maintenance,
wildcard-aware table is desirable, but the performance is too
low. While exact match table provides better performance,
manual update of its huge entries are not feasible for operators.
In addition, solutions for coordinating them to automatically
update the exact match table have not been provided to date.

In this paper, LightFlow, a mechanism to accelerate
software flow switching processing and relieve the burden of
maintaining the flow table is proposed. LightFlow introduces
two techniques: an acceleration mechanism for looking up the
wildcard-aware table and automatic updating of the hash-based
exact match table. The wildcard-aware flow table lookup is
designed on a GPU-accelerated platform incorporating two-
dimensional parallelized lookup of the entries. Automatic
update of the hash-based exact match table is carried out in
coordination with the result of the wildcard-aware flow table
lookup. The proposed mechanism addresses the
aforementioned requirements (i.e., lookup time on wildcard-
aware table and maintenance feasibility of hash-based exact
match table) by advancing the parallelism of linear search for
wildcard-aware flow table lookup and relieving operators of
the need to manually maintain all the exact match entries.

2012 IEEE 13th International Conference on High Performance Switching and Routing

978-1-61284-0833-6/12/$26.00 ©2012 IEEE 76

(a) Hash-based exact match table

hash
value

Flow identifying fields destin
ationVLAN ... Dst port

0xXXXX A ... a X

0xYYYY B ... b Y

0xZZZZ C ... c Z

...

directly jump to the
corresponding entry

Hash(B, ..., b) = 0xYYYY

Entries for every possible flow
are required to be configured.

All the fields are required to be explicitly determined.

(b) Wildcard-aware table

Priority
Flow identifying fields destin

ationVLAN ... Dst port

0xXXXX * ... a X

0xYYYY * ... b Y

0xZZZZ C ... * Z

...

Aggregated description of flows

Linear search is required to
find the matched entry with
the highest priority value

{VLAN:C, ..., Dstport:c }

The rest of this paper is organized as follows: Section II
describes the existing issues affecting flow table handling in
flow-based networking. Section III provides the architecture
and mechanisms of LightFlow. Section IV presents a
demonstration of the prototype flow switching node and
analyses the results of performance measurement. Section V
discusses the feasibility of the proposed mechanism and
compares it with other mechanisms. Section VI describes
related work. Section VII concludes this paper.

II. THE EXISTING ISSUES IN HANDLING FLOW TABLES
In flow-based networking, each node recognizes “flow” by

matching multi-layer information such as physical port, MAC
address, VLAN ID, IP address, QoS values and port numbers.
According to the policy rules, each node controls the
forwarding destination, queue assignment, and updating of the
packets. To make the flow-based networking practical, there
are two existing issues that need to be resolved.

A. Lookup Time of Flow Entry
Fig. 1 (a) and (b) shows the conventional flow table lookup

mechanisms: hash-based exact match table and wildcard-aware
linear search table, respectively. The hash-based exact match
table has columns for hash value, flow identifying fields, and
destination. The hash value is calculated from the values of
flow identifying fields. Searching an entry in the table is
carried out by calculating the hash value for a received packet,
and directly jumping to the corresponding entry. Since both the
hash calculation and accessing the entry are a fixed-time simple
process and independent of the number of the entries, this
mechanism enables fast table lookup regardless of the table
size. However, all the flow identifying fields are required to be
explicitly determined. Since hash functions basically output
different hash values from different arguments, for the entry to
be matched to the hash value calculated from packets, all the
flow identifying fields of the entry need to be identical to those
of the corresponding packet. This limitation results in the
growth of the table size.

Figure 1. Conventional flow table lookup mechanisms.

The wildcard-aware linear search table has columns for the
priority field, flow identifying fields, and destination. The flow
identifying fields can include wildcard, which enables the
aggregation of flow entries. Since each entry can include
wildcard, a packet can be matched to multiple entries in this
table. To distinguish which entry has priority over another, the
priority field is added to each entry. Searching an entry in the
table is carried out sequentially in the order of priority value.
Thus, if the targeted entry fortunately exists in a highly
prioritized entry, the lookup process can be completed at an
early stage. However, the lookup performance of the wildcard-
aware table tends to slow down in accordance with table size.

B. Maintenance of Flow Table
In conventional flow switches, flow tables require manual

or semi-automatic update to reflect operators’ control policy.
Although there are signaling protocols [9][10][11] which can
automatically specify end-to-end routes for flows in
combination with underlying routing mechanisms (e.g., source
routing [12] and other explicit routing mechanisms), they are
unlikely to be used for carrier services since they affect the
development of applications to implement such the signaling
protocols. Therefore, reducing the number of the flow entries to
be maintained is important from an operator viewpoint. While
some flow switches have both the exact match table and
wildcard-aware table, solutions for coordinating them to
automatically update the exact match table have not been
provided to date. Therefore, the huge entries in exact match
table still require manual update.

III. PROPOSED ARCHITECTURE AND MECHANISM OF
LIGHTFLOW

A. Basic Idea of LightFlow
There are two requirements for the functionality of the flow

table:

• From the viewpoint of operation, aggregation of flow
information with wildcard is required to avoid
configuring flow table entries for all flows manually.

• From the viewpoint of packet forwarding processing,
high-speed matching is required to maintain
performance.

For fast table lookup, hash or other deterministic algorithms
are suitable, however, such algorithms have difficulty handling
wildcard, longest prefix matching, and range matching. On the
other hand, once you have obtained the exact header
information of the flow, it is better to use deterministic
algorithms. Considering that wildcard-based matching is
required only for the first packet of the flow, the rest of the
packets do not require such a linear search, due to the fact that
the full set of flow matching information has already been
obtained while the first packet was being processed.

The basic idea of LightFlow is as follows:

• To avoid manual configuration for all the exact entries,
automatic update of the hash-based exact match table
is introduced. The addition of entries is based on the

77

priority
Flow identifying fields

Wildcard
flags

Destinat
ion optionIncom

ing IF
Src

MAC ... Dst IP Src
port

Dst
port

0x0000 * * ... * * a 11101110 eth0 -

0x0001 * B:B:B ... IP_B/mask_B * * 10101011 eth1 -

0x0010 * C:C:C ... * * c 10111110 IP_X rule_P

...

0x1010 * * ... IP_D/mask_D * d 11110010 IP_Y rule_Q

...

Wildcard-aware flow table

Pri. IF S-
MAC

D-
MAC

VLA
N ID S-IP D-IP S-

port
D-
port

0x0000 1 1 1 0 1 1 1 0

0x0001 1 0 1 0 1 0 1 1

0x0010 1 0 1 1 1 1 1 0
...

Pri. IF S-
MAC

D-
MAC

VLA
N ID S-IP D-IP S-

port
D-

port
0x0000 1 1 1 1 1 1 1 1

0x0001 1 0 1 0 1 1 1 1

0x0010 1 1 1 1 1 1 1 0

...

GPU

Matching result matrix (1) Copy

(2) Compare column by column(3) Update matrix

(4) Find the matched entry

Forwarding Engine

Forwarding
Controller

Packet
in/out

Packet
in/out

Wildcard-aware flow
table manager

Hash-based exact
matching table manager

Operator

Hash-based exact
matching table

Wildcard-aware flow
table

step1 step2

step3
(optional)

step4

step5
(optional)

matching result of the wildcard-aware table, and the
deletion of entries is based on periodic monitoring.

• To accelerate lookup on the wildcard-aware flow table,
a GPU-accelerated two-dimensional lookup
mechanism for linear search is introduced.

Although utilizing both the tables has been considered to
date, the effect of coordinating the two tables has not been
investigated. LightFlow tries to relieve operators of the burden
of managing flow entry directly for each exact flow by
coordinating the two tables.

B. Functional Architecture
Fig. 2 shows the LightFlow architecture. The node has both

a wildcard-aware flow table and a hash-based exact match
table. The wildcard-aware flow table manager and the hash-
based exact match table manager update entries on each
corresponding table. The wildcard-aware flow table manager
updates the entries of the table according to requests from the
operator (including manual operation, network management
systems, routing daemons). The hash-based exact match table
manager monitors and deletes unused entries from the table.
The forwarding controller drives the table lookup process for
both tables in the appropriate sequence. The forwarding engine
performs packet reception, forwarding, and provides packet
information to the forwarding controller.

Figure 2. The LightFlow architecture.

The lookup of the destination of a packet occurs in five
steps. In step 1, the forwarding engine passes the information
of the received packet (e.g., incoming physical interface, MAC
addresses, VLAN ID, IP addresses, port numbers) on to the
forwarding controller. In step 2, the forwarding controller
searches the hash-based exact match table to check whether a
matched entry exists or not. If a matched entry is not found,
then the forwarding controller searches the wildcard-aware
flow table to find the entry that has the highest priority among
all the entries that match the packet in step 3. This step is
skipped in the case where matched entry is found in step 2. In
step 4, the forwarding controller requests the forwarding engine
to forward the packet. In the case where the destination is
resolved in step 3, the forwarding controller adds the new entry
for the flow to the hash-based exact match table in step 5.

To update the control policy for flows, the operator requests
the wildcard-aware flow table manager to update the flow

information. Then the manager updates the related flow
information on the table.

C. Two-Dimensional Parallelization Method for
Acceleration of Wildcard-Aware Flow Table Lookup
Fig. 3 shows the proposed lookup mechanism for the

wildcard-aware flow table. The entry of the wildcard-aware
flow table is composed of columns for the priority field, flow
identifying fields, wildcard flags, destination, and option. The
priority field value is unique for determining which entry
should be matched. The flow identifying fields include
multiple columns which are for layer 1 to layer 4 information,
and wildcard can be used for the arbitral column. Each of the
columns has its matching criteria such as exact matching,
longest prefix matching and range matching. The wildcard
flags field is for fast recognition of columns with wildcard. The
destination field is the forwarding correspondent and is the
same as that in conventional IP routing. The option field may
be included to provide the additional control information (e.g.,
QoS control, packet rewrite).

Figure 3. Table lookup on the wildcard-aware flow table.

The difference in the matching criteria for each column
made it difficult to carry out parallelization of matching for
multiple columns by GPU using conventional mechanisms.
The proposed mechanism applies parallelization to the same
column for multiple entries which use the same matching
criteria. This “two-dimensional” parallelization enables a
higher degree of parallelism on GPU processing to be attained.

When the forwarding controller recognizes that the
incoming packet is not matched to any of the hash-based exact
matching table entries, table lookup on the wildcard-aware
flow table is invoked. Lookup on the table is carried out from
the entries with the highest priority and multiple entries are
checked simultaneously. The lookup procedure consists of the
following three steps. First, wildcard flags for the selected
entries are copied to a matching result matrix. Each of the
elements of the matching result matrix indicates whether the
corresponding column matches the packet information or not.
The element with “1” indicates that it matches the packet
information while the element with “0” indicates otherwise.
Second, fields whose corresponding elements are “0” are

78

hash
value

flow identifying fields
destin
ation

discard
flag optionIncomi

ng IF
Src

MAC ... Dst IP Src
port

Dst
port

0x203F ethA A:A:A ... IP_B a b ethX 1 rule_P

0x3150 ethB C:C:C ... IP_D c d ethY 0

0x73D1 ethC E:E:E ... IP_F e f ethZ 1 -

...

0xB4C9 ethD H:H:H ... IP_J h j ethW 0 rule_Q

...

Hash-based exact match table

Wildcard-aware flow table

Incoming packet

Periodic
check

= 1

Detected discard
flag = 1

Update discard flag
Hash(info) = 0xB4C9

Delete entryAdd entry

Refer entry

Hash(ethC, ..., f) = 0x73D1
{ethC, ..., f} -> ethZ

LightFlow NodeTraffic Sender Traffic Receiver

xge0 xge1
(10Gbps) (10Gbps)

NIC

Forwarding Engine

Forwarding Controller

device

kernel

userland

GPU

CUDA driverLinux TCP/IP stack

Hash-based Exact Match
Table Manager

Wildcard-aware Flow
Table Manager

Management CLI

Hash-based exact
match table

Wildcard-aware
flow table

grouped by the same column and checked in parallel by the
GPU since the check for the same column uses the same
instruction. And the elements for matched fields are marked as
“1” in the matching result matrix. Third, the match of each
entry is judged by calculating the conjunction of all the
elements in the entry. This process is also accelerated by the
GPU. If there are entries whose result is “1”, the entry with the
highest priority is the matched entry. If there are no entries that
match, the same operation will be carried out for the next
selected group of entries.

D. Automatic Update of Hash-based Exact Match Table
Fig. 4 shows the management process of the hash-based

exact match table. The entry of the table is composed of
columns for the hash value, flow identifying fields, destination,
discard flag and option. The hash value is calculated using all
the values in the flow identifying fields. The flow identifying
fields are used to check whether the entry corresponds correctly
to the searched packet, since conflicting hash values can
occasionally occur. The discard flag is used to recognize
whether the entry is outdated and needs to be deleted or not.
Destination and option are exactly the same as those in the
wildcard-aware flow table. All the entries are searched using
hash in this table and the hash value calculation can be
accelerated by the GPU.

Figure 4. Table lookup and update of the hash-based exact match table.

Addition of entries to the hash-based exact match table is
triggered by the lookup of the wildcard-aware flow table.
When a packet matches an entry in the wildcard-aware flow
table, the hash value for the packet is calculated from the
header information, and the entry for the packet is newly added
to the hash-based exact match table.

Since the addition of entries occurs for every new flow, it is
necessary to have a deletion mechanism for outdated-entries to
avoid the situation where the number of entries reaches the
upper limit of the table size and any new addition of entries is
rejected. Deletion of entries is carried out independently to
table lookup for the wildcard-aware flow table and the hash-
based exact match table. The entries are checked periodically,
and the entries whose discard flag is set to “1” are deleted from
the hash-based exact match table. The discard flag is set to “1”
after the entry is checked, while it is set to “0” when the entry
is newly added or the entry is matched for a forwarded packet.

IV. PROOF OF CONCEPT DEMONSTRATION
To prove the feasibility of LightFlow, a prototype node was

implemented. With the manual flow entry configuration, the
basic node operation was demonstrated. The table lookup
performance was measured and compared to that of the
conventional wildcard-based table lookup.

A. Environmental Setup
Fig. 5 shows the configuration of the demonstration. The

LightFlow prototype is implemented on Linux PC. The
specifications of the hardware consisting of commodity
products are shown in TABLE I. The flow switch software is
implemented on CentOS 6.2 (Linux kernel 2.6.32) and the
CUDA driver version used was 270.41.19. In this prototype
implementation, the forwarding controller, wildcard-aware
flow table manager and hash-based exact matching table
manager were implemented on the user space of the OS, while
the wildcard-aware flow table and hash-based exact match
table were implemented on the GPU global memory. The
forwarding controller dispatches the lookup process and the
other tasks such as hash calculation to the GPU through the
CUDA driver. The forwarding controller also contacts the
kernel TCP/IP stack to utilize some basic networking tasks (e.g.
ARP resolution). The forwarding engine is implemented within
the kernel and it forwards received packets to the forwarding
controller bypassing the kernel. For the management of
wildcard-aware flow table entries, a simple command line
interface (CLI) was implemented. The traffic sender and
receiver were connected to the node via a 10 gigabit Ethernet
link.

Figure 5. Setup for the demonstration.

TABLE I. SPECIFICATIONS OF THE LIGHTFLOW PROTOTYPE

Device Hardware Quantity

Processor Intel Xeon 5650 2.16GHz 2

Memory DDR3 8GB ECC-Registered 6

GPU GeForce GTX580 (3GB VRAM) 2

Network Intel X520-DA2 Dual port 10GbE 4

Motherboard SuperMicro X8DAH+F 1

79

0

1

2

3

4

5

6

7

exact match field prefix match field range match field

1000 entries
10000 entries

Sp
ee
du
p
fa
ct
or

0.E+00

2.E+02

4.E+02

6.E+02

8.E+02

1.E+03

1.E+03

1.E+03

2.E+03

0.
E+
00

2.
E+
06

4.
E+
06

6.
E+
06

8.
E+
06

1.
E+
07

1.
E+
07

Wildcard-aware flow table

Hash-based exact match table

800M

600M

400M

200M

1G

1.2G

1.4G

1.6G

8 10

The number of entries [x 106]

6420

0

50

100

150

200

250

300

0 100 200 300 400 500 600

sp
ee
du
p f
ac
to
r

the number of packets per flow

exact match field
prefix match field
range match field

B. Table Lookup Performance
Using the configuration above, the lookup time was

measured for both the tables by changing the number of entries.

For the hash-based exact match table, the elapsed time
required for completing hash calculation and table lookup was
measured. The average time ranges from 51 microseconds to
71 microseconds, independent of both the number of the entries
and the values of the flow identifying fields.

For the wildcard-based flow table, the lookup time of the
entry which has the lowest priority was measured for three
fields with different criteria: exact match field (source MAC
address), prefix match field (destination IP address), and range
match field (destination port number). Fig. 6 shows the factor
of speedup compared to the simulated value of conventional
linear search-based mechanism [7][13]. LightFlow completed
wildcard-aware flow table lookup from three- to six-fold
compared to the conventional mechanism.

Figure 6. Speedup of wildcard-aware flow table.

Regarding the speedup effect obtained through the
coordination of the wildcard-aware flow table and hash-based
exact match table, the relationship between average lookup
time and the number of packets per flow is shown in Fig. 7.
The number of the entries is 10,000 for both tables. For each
matching criteria, a highly significant speedup is observed for
the proposed mechanisms especially when the number of
packets per flow becomes large, since the proportion of packets
which require lookup of the wildcard-aware table is decreased.
The reduction in the time for looking up on the wildcard-aware
flow table is most effective for prefix matching, since it
requires more steps to check matching than for the other field
in lookup of the wildcard-aware flow table.

Figure 7. Speedup effect of wildcard-aware flow table coordinating with
hash-based exact match table.

V. DISCUSSION
Since the proposed mechanism uses two tables (wildcard-

aware table and hash-based table), it consumes a lot of memory
compared to a single wildcard-based table. Although there is a
trade-off between performance and cost, the feasibility of
memory usage should be considered. In the case of our
prototype implementation, 128 bytes and 136 bytes are
required for a wildcard-aware flow table entry and a hash-
based exact matching table entry, respectively. Fig. 8 shows the
relationship between the number of entries and memory usage.
Both tables can hold about ten million entries within 1.4
gigabytes of memory. Considering that the current number of
IPv4 routes is about 400,000 [14] and the number of flows
supported by a commercial flow router is 3,000,000 [15], the
memory usage of the proposed flow table is feasible. Since
recent GPUs have a global memory of more than 1.5 gigabytes,
it is possible for both tables to be extracted using GPU memory
to hasten memory access.

Figure 8. Relationship between the number of entries and memory usage.

There is another potential issue regarding processing jitter.
For parallel processing on GPU, some packets may be subject
to a waiting period until synchronization with other packets
occurs. In the prototype implementation, the maximum
variance for the processing time was about 600 microseconds
in the case of 10,000 flow entries. Note that this value is the
worst case (i.e., all packets are matched at the lowest priority in
the wildcard-aware table). Compared to the telecommunication
carriers’ service level agreement for enterprise networks,
whose typical value for jitter ranges from sub-milliseconds to
tens of milliseconds, the measured jitter of the flow table
lookup seems to be feasible. However, we need to conduct
further investigations since other causes of jitter (e.g.,
communication between GPU and motherboard) should also be
taken into account. In addition, there is a possibility of great
throughput instability when commodity servers are used due to
interruption processes and so on, compared to the router and
switch appliances. Therefore, careful tuning of the OS-level
configuration is also desired for practical use.

VI. RELATED WORK
Owing to progress in software router technologies, the

flexibility of packet processing and its performance have been
improved. Click modular router [2] is a software router with
high packet processing flexibility. Due to the enhanced
performance of PCs, 20 Gbps throughput (per two ports) using

80

10 Gbps network interface cards has already been achieved
using a commercial software router, Vyatta [3][16].
RouteBricks [5] takes a cluster-based approach to achieve 35
Gbps throughput (per four ports) and its capacity can linearly
scales to the number of servers. Some recent studies have
attempted to accelerate packet processing by utilizing a GPU.
Since a GPU has an advantage regarding parallel processing
for simple arithmetical instructions, it is suitable for application
to packet pattern matching and cryptographic processing
[17][18]. GPU-acceleration is also considered to be promising
for IP table lookup. [19][20][21] proposed GPU acceleration
for IP routing table lookup algorithms such as radix-tree [22],
DIR-24-8-BASIC [23], trie on hash tables [24]. PacketShader
[7] also uses a GPU for accelerating packet processing.
PacketShader supports IPv4/v6 routing and flow switching
based on OpenFlow reference implementation [13]. The flow
table consists of hash-based exact match entries and wildcard-
aware linear search entries. In PacketShader, hash value
calculation and wildcard matching are offloaded to the GPU.
The method proposed in [25] is another approach to accelerate
flow table lookup using GPU. In the method, hash-based
lookup tables are generated for each combination of wildcard
fields, and lookup operation is carried out for all the tables in
parallel. The method assumes that each field can be matched
exactly unless the value is not wildcard. Hence, the method
does not support longest prefix matching and range matching.

VII. CONCLUSIONS
This paper proposed LightFlow, a mechanism to speed up

software flow switching processing and relieve the burden of
maintaining the flow table. As the key technologies of
LightFlow, a two-dimensional parallelization of the linear
search on the wildcard-aware table and an automatic updating
mechanism for the hash-based exact match table were
presented. The demonstration showed that the two-dimensional
parallelization increased the speed of the lookup of the
wildcard-aware flow table about three- to six-fold compared to
the conventional mechanism. The demonstration also showed
that fast lookup of the hash-based exact match table can be
utilized while operators only have to manage the wildcard-
aware flow table. For future work, the detailed implementation
of GPU resource allocation and utilization for each
computation task should be investigated for improving the
performance of this mechanism.

ACKNOWLEDGMENT
The authors wish to thank Dr. Yasuyuki Nakajima and Dr.

Itsuro Morita for their continuous support of this study.

REFERENCES
[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.

Rexford, S. Shenker, and J. Turner. “OpenFlow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, pp.69-74, April 2008.

[2] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
Click Modular Router,” ACM Transactions on Computer Systems vol.
18, no. 3, pp. 263-297, August 2000.

[3] Vyatta official website, http://www.vyatta.com/
[4] R. Bolla, and R. Bruschi, “The IP Lookup Mechanism in a Linux

Software Router: Performance Evaluation and Optimizations,” in Proc.
of HPSR 2007, May 2007.

[5] M. Dobrescu, N. Egi, K. Argyraki, B. Chun, K. Fall, G. Iannaccone, A.
Knies, M. Manesh, and S. Ratnasamy, “RouteBricks: Exploiting
Parallelism To Scale Software Routers,” in Proc. of ACM SOSP 2009,
pp. 15-28, October 2009.

[6] N. Varris, and J. Manner, “Performance of a Software Switch,” in Proc.
of HPSR 2011, July 2011.

[7] S. Han, K. Jang, K. Park, and S. Moon, “PacketShader: a GPU-
accelerated Software Router,” in Proc. of ACM SIGCOMM 2010,
September 2010.

[8] Open Networking Foundation, “OpenFlow Switch Specification Version
1.2,” December 2011.

[9] R. Braden, et al., “Resource ReSerVation Protocol (RSVP) - Version 1
Functional Specification,” IETF RFC 2205, September 1997.

[10] ITU-T, “Signalling protocols and procedures relating to Flow State
Aware QoS control in a bounded sub-network of a NGN,”
Recommendation ITU-T Q.3313, October 2011.

[11] TIA, "QoS Signaling for IP QoS Support," TIA-1039, July 2005.
[12] J. Postel, “Internet Protocol,” IETF RFC 791, September 1981.
[13] OpenFlow reference implementation, available at

http://www.openflowswitch.org/wp/downloads/
[14] BGP Routing Table Analysis Report, http://bgp.potaroo.net/
[15] Anagran FR-1000 datasheet, http://anagran.com/assets/docs/FR-

1000Datasheet031511.pdf
[16] Intel solution brief, “Integrating Services at the Edge,”

http://edc.intel.com/Download.aspx?id=2977
[17] G. Vasiliasdis, S. Antonatos, M. Polychronakis, E. P. Markatos, and S.

Ioannidis, “Gnort: High Performance Network Intrusion Detection
Using Graphics Processors,” in Proc. of RAID 2008, pp. 116-134,
September 2008.

[18] R. Simth, N. Goyal, J. Ormont, K. Sankaralingam, and C. Estan,
“Evaluating GPUs for Network Packet Signature Matching,” in Proc. of
ISPASS 2009, pp. 175-184, April 2009.

[19] S. Mu, X. Zhang, N. Zhang, J. Lu, Y. Deng, and S. Zhang, ” IP Routing
Processing with Graphic Processors,” In Proc. of IEEE DATE 2010, pp.
93-98, March 2010.

[20] Y. Lee, M. Jeong, S. Lee, and E. Im, “Fast Forwarding Table Lookup
Exploiting GPU Memory Architecture,” in Proc. of IEEE ICTC 2010, pp.
341-345, November 2010.

[21] J. Zhao, X. Zhang, X. Wang, Y. Deng, and X. Fu, “Exploiting Graphics
Processors for High-performance IP Lookup in Software Routers,” in
Proc. of IEEE INFOCOM 2011, pp. 301-305, April 2011.

[22] K. Sklower, “Tree-Based Packet Routing Table for Berkeley Unix,” in
Proc. of USENIX Winter Conference ’91, pp. 93-99, January 1991.

[23] P. Gupta, S. Lin, and N. McKeown, “Routing Lookups in Hardware at
Memory Access Speeds,” In Proc. of IEEE INFOCOM ’98, pp. 1240-
1247, April 1998.

[24] M. Waldvogel, G. Varghese, j. Turner, and B. Plattner, “Scalable High
Speed IP Routing Lookups,” In Proc. of ACCM SIGCOMM ’97,
September 1997.

[25] R. Yanggratoke, and H. Puthalath, “Method for Enhancing Table
Lookups with Exact and Wildcards Matching for Parallel
Environments,” US Patent Application No. 2011/0292830, Decemver
2011.

81

